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Summary

We propose a general approach for analyzing long-term experiments with pan-
els of nonlinear time series data, in the framework of additive models. Among
other things, our approach is useful for testing and estimating the (partial) com-
mon dynamic structure across treatment groups. We illustrated our approach with
a detailed analysis of an ecotoxicological experiment on the effect of sublethal doses
of a toxic substance (cadmium) on the long-run dynamic structure of the green-
bottle blowfly (Lucilia sericata). The general model for the blowfly experiment is
an additive model which is derived from a stage-structured ecological model. We
discuss the relationship between the components of the additive model and the
ecological parameters of the underlying stage-structured model. In particular, our
proposed approach casts new insights on the effect of toxic diet on the population

dynamic structure of the blowfly.
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1. Introduction

Data on population dynamic structure often come in the form of a panel of
counts of the different life stages of some populations (for example: larva, pupa
and adult) taken at regular time intervals under different experimental conditions.
A fundamental issue is to test whether or not the observed dynamic structure de-
pends on the treatments, and whenever treatment effects do occur, to localize and
estimate the changes in the dynamic structure. In the case of linear population
dynamic structure, classical ANOVA techniques have been extended to time series
data within the frameworks of time domain and frequency domain analyses; see
Box and Tiao (1975) and Brillinger (1981). However, similar analyses of nonlinear
time series data is fairly under-developed. Here, we propose a general approach to
analyze such experimental data with nonlinear time series. We shall motivate and
illustrate our approach using a panel of laboratory blowfly time series of counts
from an ecotoxicology study. The analysis of the blowfly data set is also of great
interest in itself and a main focus of this paper is to shed new insights on the effect

of toxic diet on population dynamic structure.

The greenbottle blowfly (Lucilia sericata) data (Smith et al, 2000) was set
up to study the effect of toxic diet on the blowfly population dynamic structure
(i.e., changes in the populations abundance, also being referred to as density, over
time). This data set consists of bi-daily counts of different life stages of 12 blowfly
populations over a period of about 2 years. The experiment is a 22 factorial de-
sign; the first factor is whether or not the blowfly population was fed a constant
amount of sublethal doses of a toxic substance (cadmium), and the second factor is
the initial population size. A stage-structured model, see Lingjserde et al. (2000)
and Section 4, relating the counts of the blowfly at various life stages suggests a
nonlinear relationship among these counts. However, the underlying biology is not
sufficiently understood to specify the functional form of the nonlinearity. Thus,
Lingjeerde et al. (2000) adopted a nonparametric approach, specifically, the addi-

tive model, to estimate the underlying stage-structured model for the panel of time



series of counts; see Section 6 for test results supporting the additivity assumption
for the blowfly data. Lingjeerde et al. (2000) pointed out that some vital statistics
including reproductive rates of the blowfly differ between the treatment group and
the control group. Granted the differences in these vital statistics, it is of interest
to determine whether or not the dynamic structure otherwise remains unchanged
by the toxic diet. However, Lingjeerde et al. (2000) did not carry out any formal
testing procedure to determine how the density-dependent factors, for example, the
cadmium diet, and other density-independent factors affect the blowfly population

dynamic structure.

In the analysis of experiments with nonlinear time series data, several inter-
esting issues may arise. First, it is of interest to check whether or not populations
under identical experimental conditions share the same dynamic structure. Hence,
several independent populations under identical experimental conditions should be
included in the experiment and then one can examine population dynamic structure
variation both within and between experimental conditions. Second, it is likely that
the population dynamic structure will settle to its equilibrium (long-run) dynamic
structure only after a lengthy period of transiency. For the blowfly data, half of the
populations were started with low initial size, and the rest with high initial size.
There were three independent populations under each experimental condition, hence
altogether there were twelve independent populations in this study. Lingjeerde et
al. (2000) provided some evidence that the blowfly dynamic structure reached dy-
namical equilibrium after about one year. It is plausible that the treatments may
affect the population dynamic structure differently over the transient phase than
they do over the equilibrium phase. Third, the intercept terms in the governing
equations of the population dynamic structure may be interpreted as vital rates
such as some reproductive or mortality rates; see Section 4. A simple case occurs
if the treatment effects are confined to possibly changing the intercept terms of the
governing equations of the dynamic structure, but with otherwise unchanged dy-

namic structure; in this case, we say that the treatment group and the control group



share common dynamical structure. This is similar to the case of parallel regres-
sion models. Fourth, the treatments may affect both the intercept terms and the
population dynamic structure. Even in this case, some components of the dynamic
structure may be identical across the treatment groups and the control groups. For
example, the transition mechanism between some life stages may be unaltered by
the treatments. Thus, it is of interest to localize and estimate the changes in the
dynamic structure in the case that treatment effect on the dynamic structure is
deemed significant. The detection and pooling of (partial) common structures in
experimental or observational data is of considerable scientific interest; see Stenseth

et al. (1999) and Yao et al. (2000).

Here, we propose an approach, in the framework of additive models, to ad-
dress some of the above issues. The blowfly data serves as an important case study
for illustrating our approach and also for shedding insights on how the density-
independent factor, cadmium diet interact with the density-dependent factors. Our
analysis reported below suggests that adding cadmium in the diet increases the
adult-to-adult recruitment rate, reduces the adult survival, and modifies the func-

tional relationship between the number of larvae and the number of new pupae.

We now outline the content of this paper. In Section 2, we discuss how one can
generalize the idea of expressing separate model equations under different experi-
mental conditions into a single equation with the help of indicator functions. Detail
description of the blowfly data is given in Section 3. We describe the model and
the testing procedure in Sections 4 and 5. The main result is reported in Section 6,

and we discuss future statistical and biological researches in Section 7.
2. A framework for Studying Common Structure

In classical simple linear regression, one is typically interested in determin-
ing a linear relationship between a response and an explanatory variable based
on a given data set. Whenever the individuals in the data set are divided into

groups/categories, different groups may have different relationships between the



response and explanatory variable. One way to model the relationship for all indi-
viduals is to treat the groupings as another explanatory variable, taking numerical
values to indicate the grouping of each individual. Since this explanatory variable
simply identifies the groups of a nominal variable and its values do not have any
quantitative meaning, it is usually called an indicator/dummy /categorical variable.
If there is only two groups, we often use the values “0” and “1”, which may signify,
for instance, the control and treatment groups; then this variable is called binary
variable. There are a number of different ways to express models relating these

variables. For example,
e separate equations, one for each group,
e single equation which is divided into cases, one for each group,
e single equation with indicator functions, one for each group, and
e single equation with one indicator function less than the number of groups.

In this section, we use y, 1 and x5 to denote the response, the original ex-
planatory variable, and the categorical explanatory variable respectively. Hence,
the data set is denoted by {y, T1¢, To;}7_,. Assuming that xo is a binary variable,
we will first consider the following expressions of the linear relationship between y

and z; for each group:
FEzxpression 1: For j =0, 1,
Yy = aj + BT + €5, Top = 7,

where €;;s are independent and identically distributed. Note the error distri-

butions may not be identical between groups.

Ezxpression 2:

_ Jao+ Boxit + €or, for xop =0,
Yy = .
o1 + bz + €1y, for xop =1,

where the €;;s are same as above.

Ezxpression 3:

yr = (oo + Boxie + eor)lo(zar) + (aq + Brzir + €1) 1 (z2r),



where the €js are same as above, Iy and I; are indicator functions on the

binary variable x5 defined as follows:

_J1 for o =0, 4
10(37215) = {0 for Top = 1, and I =1-— 1.

FExpression 4:
Yr = Yo +nx1e + Yol (x2r) + y3x1ed (22r) + €,

where ¢;s are independent and identically distributed and I = I;.

Expressions 1 — 3 define the same model, M;. This model implies that the in-
tercept, slope of the linear relationship between y and x1, and the error distribution
may be different for the control and the treatment groups. Expression 4 defines
a different model, Ms. It has an additional condition on the error distributions:
different groups are assumed to have the same error distribution. Hence, these two
models are equivalent if and only if the error distributions are identical across the
different levels of 5. Moreover, the hypothesis of a common (regression) structure

between y and 1, (i.e., common structure across groups) can be expressed as
ap=a; and [y =[G, in My,

and

’)/2:73:0, n MQ.

Next, let us generalize the above simple linear regression model to allow for

” where

nonlinear terms, (i.e., now the “constantxz;” term is replaced by “f(z1)
f is a smooth function). Since the model is unchanged if we add a constant to f
and subtract the same constant from the intercept, we need to add a number of
constraints to make sure that all equations are identifiable. For model M (different

error distributions for different groups), these nonlinear relationships are expressed

as follows: for j =0, 1,

yr = o+ fi(z1e) + €5



The common identifiability constraints for M; are to set the sums of the nonlinear
terms f;(z1:) equal to zero for each group. Note that the sums are over individuals
in the same group only. These constraints can be expressed as:
> file) =0, j=01 (1)
T1t:1 T2t =]

For model M, (common error distribution), the expression is:

e = Bo+ go(z1e) + Bil(xar) + g1(z1e)I(z2r) + €. (2)

Now the common identifiability constraints are to set the sums of the two nonlinear
terms go(z1¢) and g1(x14)I(z2¢) to zero over all individuals. Since g1 (z14)I(z2¢)
is equal to zero for all individuals in the control group, these constraints can be

expressed as:

. o)=Y gi(z)=0. (3)

all x1¢ T1¢:x2t=1

As before models M; and M, are equivalent if and only if the distributions of the
error are identical across the different levels of x5. This assumption on the error

distributions is often satisfied in practice.

The common structure hypothesis can be expressed as
ag=oa; and fo= fi, in M

and

B1=0 and g¢gi(-)=0, in M.
Note that My can also be expressed as follows:
Y = {’YO + hO(xlt)}IO(th) + {’Yl + hq (1['1,5)}[1(.1‘2,5) + €. (4)

Now the identifiability constraints (3) and the common structure hypothesis become

Z h’j(xlt) =0, j=01, (5)

T1¢:T2t=]

Yo = V1 and h() = hl,



respectively. Equation (2) enables us to fit models and carry out hypothesis testing
at the same time whereas equation (4) leads to direct estimation of the regression
function within each level of x5. Henceforth, we shall employ the common error
distribution model M5, to study the common structure in nonlinear time series
experimental data. Note that model M is specified as an additive model (Hastie
and Tibshirani, 1990) with the additive “main” effects of z1 (nonlinear) and s,

plus their interaction.

Model M, can be extended to apply to more complex experimental designs by
including in (2) or (4) more continuous and categorical explanatory variables. In
summary, this model makes it easy to adapt the indicator variable approach for
analyzing linear experimental designs to our current case of assessing the extent of

common structure with nonlinear time series experimental data.
3. Blowfly Data

In order to study the population dynamic structure of greenbottle blowfly (Lu-
cilia sericata) and how it is affected by density-dependent and density-independent
factors, an experiment was carried out at the University of Reading between 1989
and 1992. Detailed description of this data can be found in Daniels (1994) and

Smith et al. (1999); see also Lingjeerde et al. (2000).

Twelve laboratory populations of blowfly were kept in separate bottles. These
populations were divided into four experimental categories, each consisting of three
replicates. Six populations were given sublethal dosages of the toxic compound
cadmium acetate through the larval diet; the other six, that were not given cadmium
acetate, were considered as controls. Initial density was low with 30 pupae and
30 adults for three of the six populations in each group, whereas the remaining
three populations were initialized with high density: 150 pupae and 150 adults.
Throughout this paper, we refer to the populations either by an overall index (from
1 to 12) or by a triple index consisting of the terms control (CON), cadmium (CAD),

with each subdivided into low initial density (L), high initial density (H), and then



followed by the replicate sub-index (from 1 to 3) (see Table 1 for detail).

Altogether there are 36 time series. All except one population (Population 8 —
CAD(L,2)) were observed for approximately two years. Population 8 — CAD(L,2)
died out on day 298. In Lingjeerde et al. (2000), they excluded this population
from their analysis. This population is included in our study. Also there are some

missing counts during the beginning of the experiment.

< Insert Table 1 here >

There are 5 stages in the life cycle of blowfly: egg, larva, pupa, immature adult
and mature adult. Hatching is completed within roughly one day. All other stages
last for more than two days. The duration of life stages may be different between

the control and the treatment groups. For each population, the number of
e larvae of all ages,
e “new” (less than 2 days old) and “viable” (survive to become adult) pupae, and
e adults of all ages,

were recorded every two days. Thus the entire data set consists of a panel of 3 x 12

time series.
4. A Biological Model for the Blowfly Data
4.1 Preamble

We recall in this Subsection a biological model developed by Lingjserde et al.
(2000) for the blowfly data. They observed that the egg stage lasts less than a day,
the larva stage lasts for approximately 8 days among populations in the control
group, and 9 days among populations in the treatment group, the pupa stage lasts
between 6 and 12 days, the immature adult stage lasts for approximately 5 days,
and the mature adult stage lasts for approximately 12 days among populations in
the control group, and 9 days among populations in the treatment group. Regarding

the duration of each life stage, it is assumed that the egg stage lasts less than 2 days
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(not included in the data); the larva stage lasts no more than 8 days; the pupa stage
lasts no more than 10 days; the immature adult stage lasts no more than 4 days, but
the mature adult stage has no specified upper limit on its duration. Regarding the
demographic rates, we assume the followings. They are identical for all blowflies in
a given age group and have identical density-dependent structure for all age groups
within a life stage. The reproductive rate depend on the density of mature adults
only. The survival probability of a larva from one age group to the next is assumed
to be density-independent. The proportion of larvae pupating at any given time is
modelled as a function of the total number of larvae eight days before. All pupae
become adults (this data only include viable pupa), and no deaths occur in the

immature adult stage.

Based on the above assumptions, a stage-structural model for the blowfly pop-

ulation dynamic structure (ignoring the stochastic components) is defined as:

Li, = A explary + fr(log AM)} (6)
Lyt = Liexp(ars), 1<i<3 (7)
Pl = L{exp{ap + fp(log Li-1)} (8)
Pl =P, 1<i<4 (9)
A§+1 = A% = Pt5—1 (10)

AT = Ajexp{aa + fai(log A7) + fas(log A7)}, 2 <i< oo (11)

where
L! = number of larvae d € [2i — 2,2i) days old at time t, i=1,2,3,4,
L; = total number of larvae at time ¢,
4 .
-yu
j=1
P! = number of pupae d € [2i — 2,2i) days old at time t, i=1,2,3,4,5,

A% = number of adults d € [2i — 2,2i) days old at time ¢, i=1,2,...,
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A} = number of immature adults at time ¢
2 .
=Y Al = P/ ;+P'g and
j=1
AM = number of mature adults at time ¢
0 .
S
j=3
The stochastic components are modelled as additive noise on the logarithmic

scale, see below.

The raw blowfly data contains counts on
L, P!, and A=) Al=A7+AM  t=12..378
j=1

The parameters in the model defined by (6) — (11) have the following biological

interpretation:
a1 denotes the mean log reproduction rate,
aro denotes the mean log larval survival rate,
ap denotes the mean log larva-to-adult survival rate, and
a4 denotes the mean log adult survival rate.

Recall that the main objective of Lingjeerde et al. (2000) was to put as little
constraint as possible on the form of the functions entering (12) and (13) of the
model, mainly due to inadequate theoretical understanding of the basic ecological
theory necessary to deduce the functional forms from first principles. Hence, a
nonparametric approach was adopted by Lingjeerde et al. (2000). Through our
analysis reported in this paper, we may as a side result, be able to specify some of
the functions as simpler parametric functions. To be able to formulate models para-
metrically, rather than nonparametrically, is advantageous not least since biological
reasoning becomes easier; it is, we believe, easier to think about the meaning of
changing a parameter-value than to think about the meaning of changing the entire

shape of the relationship.
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We now rewrite equations (6) — (11) into another set of equations relating

observed quantities as follows:

Pl
log (Ai‘tfl) = a+ fr(log A7) + fp(log Le—1) (12)
t—4
AM
log (Mtiﬂl) = aa + fai(log AT) 4 fao(log AM) (13)
A"+ P g

3

Liyy = exp(—ap) Y Pl oexp{—sary — fp(log Liys)} (14)
s=0

where a = ap1 + 3ars + ap. Equations (12) and (13) are derived based on the
simplistic assumption of deterministic transitions between the life stages of blowfly.
In practice, the transitions are stochastic in nature corresponding to inherent bio-
logical fluctuations. Hence, error terms have to be added to the right side of (12),
(13) and (14), which shall be assumed henceforth in the paper. We will focus on
the two additive model equations (12) and (13) in this paper. As the blowfly dy-
namic structure may be subject to transient effects at the beginning period of the
experiment, we partition the data into two parts for analysis (the transient and the
stationary part). Each part lasts for approximately one year. This way we can
separately study the effect of cadmium on the population dynamic structure over

the transient period and the stationary period.
4.2 The Full Model

Based on equations (12) and (13) from Subsection 4.1, we consider a model
that has a common structure for all 12 populations, and at the same time allow
for different constants and nonparametric functions which depend on (cadmium)
treatment effect, (initial) density effect, interaction between treatment and density,

and individual population effect.

Applying the methodology described in Section 2, we use the following notation

to specify the full model:
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Main effect (common structure):

1
log (%) equation (12),
t—4
y =
lo (i) equation (13)
g A?A+Pt176 q )
log AM, equation (12),
r1 =
log AL, equation (13),
log Ly 1 equation (12),
o —

log AM  equation (13).

(Cadmium) Treatment effect:

S 1 cadmium included in the diet,
T 7010 control, i.e. no cadmium in the diet.

(Initial) Density effect:

R 1 initial density is high,
P70 control, i.e. initial density is low.

Interaction:

= { 1 interaction of cadmium and high initial density,
g 0 otherwise.

(Individual) Population effect: for p =1,2,4,5,7,8,10,11

. _ {1 population p,
Pp 0 otherwise.

For each experimental category, one of three replications (populations 3, 6, 9,
and 12, respectively) are left out in order to make all regression parameters

identifiable.

Now the full model — MTDIP can be presented as follows (below, the notation

E{-} stands for the conditional expectation of the enclosed expression given the
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covariates and their past lags):

E(y)={ao+ fi(z1) + fa(2)}
+{ar + fir(z1) + for(z2) H (21)
+{ap + fip(@1) + fap(22) M (zD)
+{ar + fur(zr) + far(x2) M (z1)

+ ) o+ fri(@) + fai(z2) H (zpj),

where the last sum sums over j € {1,2,4,5,7,8,10,11}. In the above equation, the
first three terms in the first line denote the Main common structure, the next three
terms in the second line denote the Treatment effect due to cadmium, the following
three terms in the third line denote the Density effect, the next three terms in the
fourth line denote the Interaction effect between treatment and initial density, and

the rest of the terms denote Population effects.
5. Model Selection Procedure

There are two stages in this model selection procedure. In Stage I, we focus
on the effects. In Stage II, we examine individual terms within an effect. In both

stages, a number of model selection criteria were used:
1. Approximate F-Test,
2. C) Ciriterion,
3. x2 Test, and
4. Akaike Information Criterion (AIC).

In Stage I, we start with the full model MTDIP and remove terms from it
using a procedure similar to the standard backward elimination regression model
selection procedure. Here we determine if we can remove all terms associated with
a single effect at a time. The basic procedure follows these steps. Step 1: we test
if we can remove the last 24 terms that associate with individual population effect

from MTDIP and reduce it to MTDI. If not, skip the remaining steps. Step 2: we
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test if we can remove the last 3 terms that associate with interaction effect between
cadmium treatment and initial density from MTDI and reduce it to MTD. If not,
skip the remaining steps. Step 3: we test if we can remove the last 3 terms that
associate with initial density effect from MTD and reduce it to MT. If not, skip
the remaining step. Step 4: we test if we can remove the last 3 terms that associate

with cadmium treatment effect from MT and reduce it to M.

In Stage II, we start with the model obtained from Stage I and further simplify
it by testing the significance (and the nonlinearity) of the remaining (nonlinear

smooth) terms.

Suppose the model MT:

E(y) = A{ao+ fi(z1) + fax2)}
+{ar + fir(z1) + for(z2) H (27),

is the model obtained from Stage I, to be denoted by M.1. The first step is to
consider the following simpler models:

M.2.1: E(y) = ao + fi(z1) + fao(x2) + arl(zr) + fir(z1)I(z1),

M.2.2: E(y) = ao + fi(z1) + fao(22) + arl(z7) + for (z2)I(z7),

M.3: E(y) = ag + fi(z1) + fa(z2) + apI(z7),

M.4: E(y) = ao + fi(z1) + fa(22),

M.5.1: E(y) = ap + f1(x1), and

M.5.2: E(y) = ag + fo(z2).

Testing M.1 against M.2.1 (M.2.2), we can determine whether cadmium af-
fects the second (first) nonlinear term or not. If cadmium does not affect the
nonlinear terms, we consider model M.3 and test it against M.4 (the common
structure model) to determine whether cadmium affects the relationship by shift-
ing the “curves” up and/or down. If model M.4 is accepted, we further test the

significance of the two nonlinear terms.

Suppose the model M.2.2 (cadmium does not affect the first nonlinear term)
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is obtained from the first step. The second step is to test whether some/all of the
nonlinear terms can be simplified to linear terms. That is M.2.2 is compared with

the following models:
E(y) = {ao0 + fi(z1) + fa(z2)} + {ar + Berz2 I (27),
E(y) = {ao + fi(z1) + Bewxa} + {az + Berxa} (27),
E(y) = {ao + Biz1 + fo(x2)} + {ar + for(z2)} (xr), and
E(y) = {ao + Biz1 + Bexa} + {ar + Berz2 I (27).
Suppose the second simpler model (all terms involving x5 are linear) is chosen
from the second step. The significance of these new linear terms are tested in the

third step, and so on, until only significant terms in their simplest form appear in

the final model.
6. Results and Biological Interpretations
6.1 Preamble

Recall that we have two different equations relating the population dynamic
structure variables and we are also interested in studying the effect of cadmium
separately before and after the transience. Hence, we analyze the following four

cases separately:
Case 1: Equation (12) for the first year or part 1 of the times series data,
Case 2: Equation (12) for the second year or part 2 of the times series data,
Case 3: Equation (13) for the first year or part 1 of the times series data, and
Case 4: Equation (13) for the second year or part 2 of the times series data.

The gam function in Splus is used to fit these additive models with the ns
function modeling the nonlinear functions parametrically with 4 degrees of freedom.
The ns function generates a basis matrix for a natural cubic spline which consists
of piecewise cubic polynomials separated by a sequence of internal knots with linear
extension beyond the boundary knots such that it has two continuous derivatives

and a step function with jumps at every internal knot as its third derivative. For
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example, a natural cubic spline with 4 degrees of freedom has 3 internal knots
positioned at the first quartile, the median and the third quartile, and 2 boundary
knots at the minimum and the maximum. These sets of basis functions are used to
approximate/estimate the nonlinear functions in (12) and (13). See de Boor (1978)

for more detail discussion on splines.
6.2 Stage 1

All four model selection criteria (see Section 5) were computed for all models
considered in this stage for all four cases. These results suggest that MT is the
best model for all four cases. Only the C}, values are listed in Table 2. Choosing

MT as the best model for all four cases implies that:

e Cadmium treatment has significant effect on both parts’ population dynamic
structure both in terms of mean demographic rates and nonlinear functional

relationships.
e Initial density does not have significant effect on population dynamic structure.

e Interaction between cadmium treatment and initial density does not have sig-

nificant effect on population dynamic structure.

e Individual population does not have significant effect on population dynamic

structure.

e The model MT:

E(y)= Aao+ fi(z1) + fo(z2)}

+{ar + fir(z1) + for(x2) H (z7)

can be used to model the population dynamic structure. Also the empirical
distributions of the error term of individual populations are compared with
the empirical distributions of the error term in the common error distribution
model using both quantile-quantile plot and Kolmogorov-Smirnov goodness-
of-fit test; in particular, only a few populations show mild evidence that the

identical error distribution assumption may not hold.
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< Insert Table 2 here >

6.3 Stage 11

In Stage II, all nonlinear terms are examined closely to see whether one can
reduce the above models further by replacing some of the nonlinear functions with

linear functions and remove other remaining terms. We follow four steps:

Step 1: Sequential F-tests and information from other model selection criteria
such as (), are used to determine whether any terms can be removed from the
model MT. Now the full model MT is denoted by M.1 and it is tested against the

following simpler models:
M.2.1: E(y) = ap + fi(x1) + fa(ze) + arI(zr) + fir(x1)(xr),
M.2.2: E(y) = ag + fi(x1) + fa(ze) + arl(zr) + for(x2)I(xr),
M.3: E(y) = ap + fi(z1) + fo(22) + arl(zr),
M.4: E(y) = ao + fi(21) + f2(z2),
M.5.1: E(y) = ag + f1(x1), and
M.5.2: E(y) = ap + fa(x2).
Four sets of sequential F-tests are considered:

1. M.1 vs M.2.1 vs M.3 vs M.4 vs M.5.1

2. M.1 vs M.2.2 vs M.3 vs M.4 vs M.5.1

3. M.1 vs M.2.1 vs M.3 vs M.4 vs M.5.2

4. M.1 vs M.2.2 vs M.3 vs M.4 vs M.5.2

Tables 3 and 4 show the ()}, values for all models and p-values for all the above
sequential F-tests. Based on these results, the most suitable models at this stage

for the four cases are M.1, M.2.2, M.2.2, and M.3, respectively.

< Insert Tables 3 and 4 here >
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Step 2: All nonlinear term(s) in each model is tested to determine whether or
not they can be reduced to linear functions. Table 5 lists the C), values for all the
models considered. Other model selection criteria all suggest that the models for
Cases 1 and 2 should be unchanged whereas the nonlinear functions of x5 for Cases

3 and 4 can be replaced by linear functions.

< Insert Table 5 here >

Step 3 All linear functions are tested for significance. (Note: Since there is
no change in Cases 1 and 2, only Cases 3 and 4 are considered.) In Case 3, the
linear function of x5 is not significant and hence can be removed from the model.

However, all terms in the current model for Case 4 are significant.

Step 4: All terms in the model are tested for the final time to remove any
in-significance term. In Case 1, the first nonlinear function is not significantly
different between the control and treatment groups. In Case 2, the difference of
the second nonlinear function between the control and treatment groups can be

modelled linearly.

The final set of models can be presented in forms of single-equation expressions

as follows:
Equation (12):

Parts 1 and 2:

E {mg (P 8 )} — o+ fu(log AM) + frllog L 1)
+arl(z7i) + fpr(log Li—1)I(z11),
where, e.g., fpr(-) represents the significant modification of fp(-) due to
the cadmium effect. In other words, fp(-) becomes fp(-) + fpr(-) for the
treatment group, for the first part of the data. Note that the intercepts
and the nonlinear functions differ over the two parts of the time series. In

particular, fpr is a linear function in Part 2.



19
Equation (13):

Part 1:

AM
E!l S o S _ loo AZ I
{og (Afw +Pt16)} O‘A‘l‘fAl(Og t)+04T (CL’Tt);

Part 2:

AM
E {log (ﬁ) } = aa + far(log A7) + Bazlog AM + arpI(xry),

where (342 is a parameter such that
fao(log AM) = B421log AM.,
Expressing the above models in separate-equations forms, we have
Equation (12):

Parts 1 (i = 1) and 2 (i = 2):

pl ac,i + fr,ci(log Ay + frei(log L—1)  control,
e () ) -

M
ArZa ar,; + frri(log AMy) + fpai(log Ly—1)  treatment,

where ac; = o, ar; = a+ar +c¢, freci = frri = fra [roi = fra
and fpr,; = fp: + fpr: — ¢i; the generic constants c¢;, which may differ
from occurrence to occurrence, are chosen to satisfy the appropriate set of

identifiability constraints.
Equation (13):
Part 1:

AM aa,c1+ far,c1(log AT)  control,

£ {ios (gapr )} -

e T s aari1+ farr1(log AT)  treatment,
where ag, 01 = aa, aa 1 = aa+ar, and fai,c1 = fai,r1 = faii-

Part 2:

aa.c2+ far.co(log AF)  control,

AM +B42,0,2log AM
e (ot ) -
£ T e aar2+ farr2(log AT)  treatment,

+Ba2.1.2 log AM
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where aq.co = aa, aaro = aa +ar, far,ce = fair2 = fa1,2, and
Baz,c2 = Baz,r2 = Baz.2.
As discussed in Section 2, there are two ways of specifying the identifiability

constraints:

1. All nonlinear functions are scaled to satisfy condition (3), e.g.

> fellogLia)= > fer(logL; 1) =0.

alllog Ly 1 alllog Ly 1:x7i=1

2. All nonlinear functions are scaled to satisfy condition (1) or (5), e.g. for ¢ = 1,

2,and j =0, 1,

Z fr.c.i(log AM)) = Z fr.ci(logL;—1)=0.

log AM :xre=j log Lt_1:x7t=]
Below, we shall employ the second set of constraints. However, note that the
two sets of constraints are identical if the fitted model includes an intercept

term for each group.

We now present the final estimate of the population dynamic structure incor-
porating the cadmium treatment conditions: (C1: model for control group over
the first part of data, T1: model for treatment group over the first part of data,
C2: model for control group over the second part of data, T2: model for treatment

group over the second part of data) with identifiability constraints (5):

((—2.555 + fr.1(log AM,) + frei(logLy_y) C1
. </];t1+1) —2.238 + fr1(log AM,) + frri(logLi—y) T1
° A, N —2.663 + fLVQ(IOg AM)) + fpvcyg(log Li—y) C2
| —2.163 + fro(log AM,) + fpra(logL, 1) T2
(—0.122+ fa1,1(log A7) C1
log( A:A\tM+1 1 ) ) —0.187 + fa1,1(log A7) T1
A+ P —0.085 + fa1.2(log A7) — 0.063(log AM — me) €2
[ —0.141 4 f4; 2(log A7) — 0.063(log AM — myp) T2,
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where m¢c and mp are the sample means of log A7 among the control and treatment

groups respectively.

Figure 1 shows all significant smooth functions: fL’s, fp’s, f A1’s, and f A9’s are

displayed in panels (a) — (d) respectively.

The fitted models reported above suggest that the blowfly dynamic structure
over the first part of the data differs from that of the second part of the data, which

may be attributed to transient effects.

The first part of the data suggests that for equation (12), cadmium affects the
dynamic structure in two regards: it increases the intercept term (p-value = 0.0000)
and modifies the functional form of fp(-) (p-value = 0.0104) and for equation (13),
cadmium affects the dynamic structure only in terms of the intercept which is

decreased (p-value = 0.0000).

Assuming that the blowfly dynamic structure is in steady equilibrium over
part 2 of the data, the fitted models suggest that cadmium affects the (steady-state
blowfly) dynamic structure in three regards: it increases the intercept term (p-value
= 0.0000), modifies the functional form of fp(-) (p-value = 0.0000) in equation (12),

and decreases the intercept term (p-value = 0.0000) in equation (13).

< Insert Figure 1 here >

The effect of cadmium on the function fp is shown in Figure 2. Here the
estimated difference between the control and treatment group are shown in the same
scale as in Figure 1. Panel (a) displays the estimated difference between fp 11 and
fr.c1 (p-value = 0.0104), and panel (b) displays the estimated difference between
fpr2and fpco (p-value = 0.0000).

< Insert Figure 2 here >

Finally, we carry out additivity tests on the above models. In particular, we
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test to see whether any nonlinear or linear function of cross-product term is needed.
This may be done via exploratory data analysis or formal test: Nonadditivity may
be check graphically by generalizing the idea of added variable plot in Weisberg
(1985). Alternatively, we can carry out a formal F-test. These two approaches are
outlined below: For example, to test additivity for Equation (12) Part 1. The added

variable plot method works as follows:
1. Save the residuals from the current final model.

2. Regress log(AM,) x log(L;_1) on the same regressors as in 1, and save these

residuals as well.

3. Study the relationship between these two sets of residuals. A strong rela-

tionship between the residuals indicate nonadditivity.
The approximate F-test method can be summarized as follows:

1. Enlarge the “final” model with an interaction term, say, frp{log(4M,) x
log(L¢—1)}-
2. Use ANOVA to test if this new model is significantly better than the “final”

model..

For all of the above models, both methods conclude that there is no evidence
of nonadditivity. Chen, Liu and Tsay (1995) proposed other methods to test for
additivity with nonlinear time series data. Their approaches differ from ours in that
they estimated the additive models nonparametrically using, e.g. ACE (Breiman
and Friedman 1985) whereas we employ regression splines with pre-specified degrees
of freedom to estimate the additive model. We should remark that the degrees of

freedom of the regression splines ordinarily increase with the sample size.

To conclude this section, we list a number of biological interpretations of the
final model. First, there is no significant difference among the three individual
populations within each experimental condition. And the initial density does not

affect the population dynamic structure. However, the dynamic structure during
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the second year of the study (part 2) is different from that of the first year (part 1).
In particular, during the first year, there is no inter-specific competition among the
mature adults; (see (11)). On the other hand, in the second year fas is estimated
to be a linear function implying a significant inter-specific competition among the
mature adults. Finally the effect of cadmium given through larval diet can be
summarized as follows: it increases the mean adult-to-adult recruitment rate, it
decreases the mean adult survival rate, and it changes the functional relationship
fp between the number of larvae and the number of new pupae nonlinearly during

the first year and linearly during the second year.
7. Conclusion

In this paper, we have developed a new approach to analyze experiments with
nonlinear time series data, in the framework of additive model. In particular, the
proposed approach is useful for detecting and pooling (partial) common dynamic
structure in a panel of nonlinear time series data. We have used regression splines,
specifically cubic splines with pre-specified knots, to parameterize the components
of the additive model. With increasing degrees of freedom, equivalently increasing
number of knots, the regression splines can provide increasingly accurate approx-
imations to a smooth function. Hence, this approach is ordinarily satisfactory in
practice. Nevertheless, it is of interest to adopt a fully nonparametric approach
to estimate the additive models. Unfortunately, the gam function in Splus does
not allow fully nonparametric specification of the regression functions in the case
of ANOVA-type analysis needed in our approach. More research on such an imple-
mentation and related theoretical problems is clearly needed.
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Table 1

Descriptions of the population labels.

Label Description
population group initial density

1. CON(L,1) first control low
2. CON(L,2) second control low
3. CON(L,3) third control low
4. CON(H,1) first control high
5. CON(H,2) second control high
6. CON(H,3) third control high
7. CAD(L,1) first treatment low
8. CAD(L,2) second treatment low
9. CAD(L,3) third treatment low
10. CAD(H,1) first treatment high
11. CAD(H,2) second treatment high

12. CAD(H,3) third treatment high




Table 2

Stage I Model Selection: Cp values for five models in each case
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Model Case 1 Case 2 Case 3 Case 4

MTDIP 2743.701 1950.639 285.466 59.327

MTDI 2734.115 1910.420 277.638 57.614

MTD 2736.740 1902.893 275.980 57.352

MT 2730.370 1900.782 275.919 57.224

M 2757.327 1910.828 278.117 59.322
Table 3

Stage II, Step 1 Model Selection: C)p, values for seven models in each case

Model Case 1 Case 2 Case 3 Case 4
M.1 2732.020 1901.213 275.947 57.227
M.2.1 2742.612 1913.927 276.400 57.133
M.2.2 2734.431 1901.490 275.950 57.054
M.3 2741.122 1912.168 276.285 56.983
M.4 2758.152 1911.043 278.131 59.323
M.5.1 3016.608 1990.237 277.974 59.812
M.5.2 3951.442 2374.752 281.845 59.304




Table 4

Stage II, Step 1 Model Selection: Hypothesis tests

— p-values for the two sets of sequential F-tests
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H, Hy Case 1 Case 2 Case 3 Case 4
M.2.1 M.1 0.0027 0.0002 0.0208 0.3267
M.2.2 M.1 0.0425 0.0816 0.0914 0.7745
M.3 M.2.1 0.1457 0.1922 0.1320 0.6243
M.3 M.2.2 0.0102 0.0006 0.0308 0.2432
M.4 M.3 0.0001 0.3759 0.0000 0.0000
M.5.1 M.4 0.0000 0.0000 0.1503 0.0000
M.5.2 M.4 0.0000 0.0000 0.0000 0.1207
Table 5

Stage II, Step 2 Model Selection: C), values for four models in each case

Model Case 1 Case 2 Case 3  Case 4
all nonlinear 2732.020 1901.545  275.956  56.983
linear functions on x 2749.483  1916.833  279.406  57.073
linear functions on x9 2886.450  1980.445  275.937  56.916
linear functions on both x1 and x5  2946.050 1999.744  279.798  57.034
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Figure 1. Presentation of the estimated smooth functions in the final set of equa-
tions satisfying identifiability constraints (3). Panel (a) displays f1’s, panel (b)
displays fp’s, panel (c) displays far’s, and panel (d) displays linear fas’s. In all
four panels, solid line represents functions associated with part 1 control group,
dotted line represents functions associated with part 1 treatment group, short-dash
line represents functions associated with part 2 control group, and long-dash line

represents functions associated with part 2 treatment group.

Figure 2. Estimated difference between functions due to cadmium treatment effect.
Panel (a) displays the estimated difference between fp 11 and fp 1, and panel (b)

displays the estimated difference between fpr 2 and fpc 2.
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Figure 1
Estimated smooth functions in the final set of
equations satisfying identifiability constraints (5).

(a) fL against log(AM ) (b) fp against log(L;_;)

(c) far against log(A{)
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Figure 2

Estimated difference between functions, fp, due to cadmium treatment effect.

fpr against log(L;_1)
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